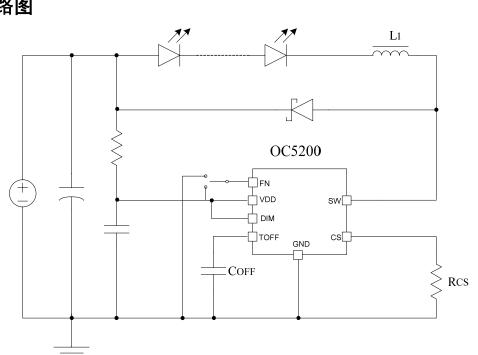


概述

OC5200 是一款内置 100V 功率 MOS 高效率、高精度的开关降压型大功率 LED 恒流驱动芯片。

OC5200 采用固定关断时间的峰值电流控制方式,关断时间可通过外部电容进行调节,工作频率可根据用户要求而改变。

OC5200 通过调节外置的电流采样电阻,能控制高亮度 LED 灯的驱动电流,使LED 灯亮度达到预期恒定亮度。


在 DIM 端加 PWM 信号,可以进行 LED 灯调光。DIM 端同时支持线性调光。

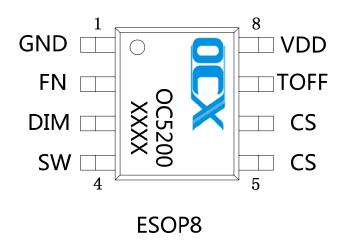
OC5200 内部还集成了 VDD 稳压管以及过温保护电路等,减少外围元件并提高系统可靠性。

OC5200 内部集成了高低亮功能。可通过 FN 脚选择 LED 输出高亮 100%与低亮 50%。

OC5200 采用 ESOP8 封装。散热片内置接 SW 脚。

典型应用电路图

特点


- ◆ 内置 100V MOS
- ◆ 宽输入电压范围: 3.6V~100V
- ◆ 高效率: 可高达 93%
- ◆ 支持 PWM 调光和线性调光
- ◆ 内置高低亮功能
- ◆ CS 电压: 250mV
- ◆ 芯片供电欠压保护: 3.2V
- ◆ 关断时间可调
- ◆ 智能过温保护
- ◆ 内置 VDD 稳压管

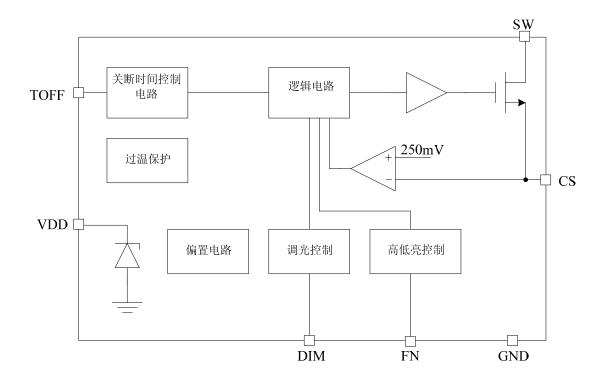
应用

- ◆ 自行车、电动车、摩托车灯
- ◆ 强光手电
- ◆ LED 射灯
- ◆ 大功率 LED 照明
- ◆ LED 背光

封装及管脚分配

管脚描述

管脚号	管脚名	描述
1	GND	接地
2	FN	高低亮功能脚。FN 接低电平 LED 高亮(100%)输出,FN 接高电平 LED 低亮(50%)输出。
3	DIM	调光脚,支持 PWM 调光及线性调光。DIM 接地则关断输出; DIM 电压高过 1.3V 则电流 100%输出。
4	SW	开关脚,接内置 MOS 管漏极。
5	CS	电感峰值电流检测脚
6	CS	电感峰值电流检测脚
7	TOFF	关断时间设置
8	VDD	芯片电源



极限参数(注1)

符 号	描述	参数范围	单位
VDD	VDD 端最大电压	5.5	V
V _{MAX}	DIM、FN、TOFF 和 CS 脚电压	-0.3~VDD+0.3	V
VSW	SW 脚最大电压	100	V
P _{ESOP8}	ESOP8 封装最大功耗	0.8	W
T_A	工作温度范围	-20~85	°C
T_{STG}	存储温度范围	-40~120	°C
$T_{ m SD}$	焊接温度范围(时间小于30秒)	240	°C
V_{ESD}	静电耐压值(人体模型)	2000	V

注1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

内部电路方框图

电特性

除非特别说明, V_{DD} =5.5V, T_A =25°C

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压						
VDD 钳位电压	V_{DD}	IVDD<10mA		5.5		V
欠压保护电压	V _{DD_UVLO}	V _{DD} 上升		3.2		V
欠压保护迟滞	VDD_HYS			0.5		V
电源电流			<u> </u>			
工作电流	I _{OP}	F _{OP} =200KHz		1.5		mA
待机输入电流	I _{INQ}	无负载, EN 为低电平		200		uA
峰值电流采样						
VCS 阈值	V _{CS_TH}	FN 接地	245	255	265	mV
关断时间			<u> </u>			
最小关断时间	T _{OFF_MIN}	TOFF 悬空,FN 接地		650		ns
DIM 调光			•			
线性调光范围	VDIM		0.3		1.25	V
DIM 关断电压				0.2		V
高低亮选择脚 FN						•
FN 高电平	VFN_H		0.7*VDD			V
FN 低电平	VFN_L				0.3*VDD	V
内置 MOS 开关管			•			
MOS 管耐压	VDS		100			V
MOS 管导通内阻	RDSON	VGS=5V		150		mΩ
过温保护					•	•
过温调节	OTP_TH			140		°C

应用指南

工作原理

OC5200 采用峰值电流检测和固定关断时间的控制方式。电路工作在开关管导通和关断两种状态。

参见首页所示的典型应用电路图,当MOS开关管处于导通状态时,输入电压 V_{IN} 通过LED灯、电感 L_{I} 、MOS开关管、电流检测电阻 R_{CS} 对电感充电,流过电感的电流随充电时间逐渐增大,当电流检测电阻 R_{CS} 上的电压降达到电流检测阈值电压 V_{CS_TH} 时,控制电路关断MOS开关管。当MOS开关管处于关断状态时,电感通过由LED灯、续流二极管以及电感自身组成的环路对电感储能放电。MOS开关管在关断一个固定的时间 T_{OFF} 后,重新回到导通状态,并重复以上导通与关断过程。

Tur设置

固定关断时间可由连接到TOFF引脚端的电容Com 设定:

$$T_{OFF} = 0.51*150K\Omega*(C_{OFF} + 8pF) + T_{D}$$

其中T_D=61ns。

如果不外接Coff,内部将关断时间设定为650ns。

输出电流设置

LED输出电流由电流采样Rcs以及Topp等参数设定:

$$I_{LED} = \frac{0.25}{R_{CS}} - \frac{V_{LED} * T_{OFF}}{2L_{A}}$$

其中VLED是LED的正向导通压降,L1是电感值。

电感取值

为保证系统的输出恒流特性, 电感电流应工作在连续模式, 要求的最小电感取值为:

$$L_1 > 4V_{\text{LED}} * T_{\text{OFF}} * R_{\text{CS}}$$

系统工作频率

系统工作频率Fs由下式确定:

$$F_S = \frac{V_{IN} - V_{LED}}{V_{IN} * T_{OFF}}$$

DIM 调光脚

OC5200 可通过DIM脚进行调光。DIM脚支持PWM调光及线性调光。当DIM脚接地,芯片关断LED输出;当DIM脚电压高过 1.3V,LED输出 100%电流。DIM脚线性调光范围在 0.3-1.25V。当不需要调光功能时,DIM脚应接高电平,DIM脚不允许悬空。在采用线性调光

时,DIM脚对地应接一个小电容(例如10NF以上电容)。

高低亮选择脚

OC5200 内置高低亮功能。FN脚接低电平,LED输出高亮(100%);FN脚接高电平,LED输出低亮(50%)。在使用低亮功能时,系统工作频率不应设置过高(通常控制在500KHZ以内),否则会影响低亮状态的恒流精度。在低亮状态下,系统峰值电流减半,同时TOFF也减半,系统工作频率相比高亮状态增大一倍。通常大的电感可获得更好的恒流精度。

供电电阻选择

OC5200 通过供电电阻R_{VDD}对芯片VDD供电。

$$R_{VDD} = \frac{V_{IN} - VDD}{I_{VDD}}$$

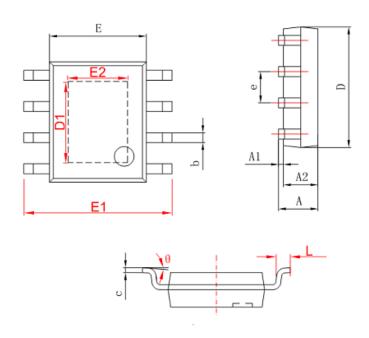
其中VDD取 5.5V, I_{VDD}典型值取 2mA, VIN为输入电压。当开关频率设置的较高时,芯片工作电流会增大,相应地应减小供电电阻取值。

芯片内部接VDD脚的稳压管最大钳位电流不超过 10mA,应注意R_{VDD}的取值不能过小,以免流入VDD的电流超过允许值,否则需外接稳压管钳位。

过温保护

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过 140 度以上时,过温调节开始起作用:随温度升高输入峰值电流逐渐减小,从而限制输入功率,增强系统可靠性。

芯片布局考虑


电流检测电阻RCS到芯片CS引脚以及GND引脚的连线需尽量粗而短,以减小连线寄生电阻对输出电流精度的影响。

封装信息

ESOP8 封装参数

SOP-8/PP

中分	Dimensions In Millimeters		Dimensions In Inches	
字符	Min	Max	Min	Max
Α	1. 350	1. 750	0.053	0.069
A1	0. 050	0. 150	0.004	0. 010
A2	1. 350	1. 550	0.053	0. 061
b	0. 330	0. 510	0.013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
D1	3. 202	3. 402	0.126	0. 134
E	3. 800	4. 000	0.150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
E2	2. 313	2. 513	0.091	0. 099
e	1. 270 (BSC)		0. 050 (BSC)	
L	0. 400	1. 270	0.016	0. 050
θ	0°	8°	0°	8°