

概述

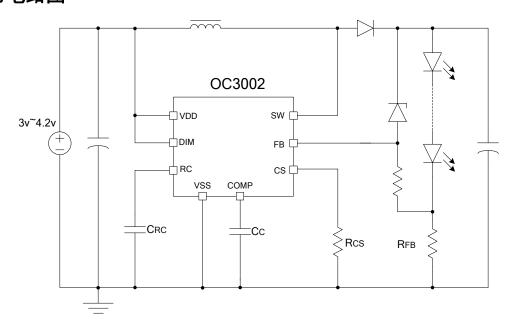
OC3002 是一款內置30V功率NMOS 高效率、高精度的升压型大功率LED恒流 驱动芯片。

OC3002 采用固定关断时间的控制方式,关断时间可通过外部电容进行调节,工作频率可根据用户要求而改变。

OC3002 通过调节外置的电流采样电阻,能控制高亮度 LED 灯的驱动电流,使 LED 灯亮度达到预期恒定亮度。在 EN 端加 PWM 信号,还可以进行 LED 灯调光。

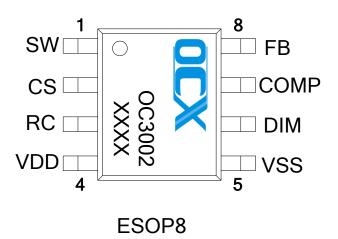
OC3002 内部集成了 VDD 稳压管, 软 启动以及过温保护电路, 减少外围元件并 提高系统可靠性。

OC3002 采用 ESOP8 封装。散热片内 置接 SW 脚。


特点

- ◆ 内置 30V 功率 MOS
- ◆ 高效率:可高达95%
- ◆ 最大工作频率: 1MHz
- ◆ FB 电流采样电压: 250mV
- ◆ 芯片供电欠压保护: 2.6V
- ◆ 关断时间可调
- ◆ 智能过温保护
- ◆ 软启动
- ◆ 内置 VDD 稳压管

应用

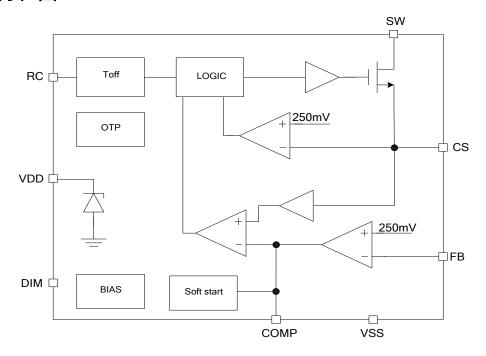

◆ 锂电池供电的 LED 灯串

典型应用电路图

封装及管脚分配

管脚定义

管脚号	管脚名	描述	
1	SW	功率 MOS 管漏极	
2	CS	输入限流检测脚	
3	RC	关断时间设置	
4	VDD	芯片电源	
5	VSS	接地	
6	DIM	芯片使能,高电平有效	
7	COMP	频率补偿脚	
8	FB	输出电流检测反馈脚	
-	散热片	接SW脚	

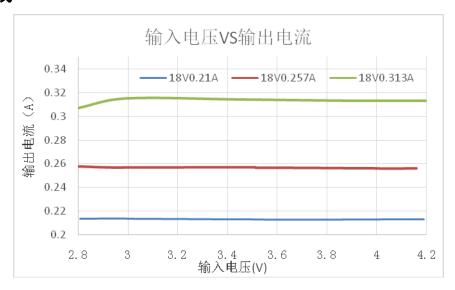


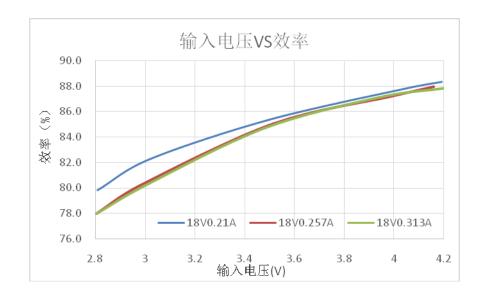
极限参数(注1)

符 号	描述	参数范围	单位
VSW	VSW 端最大电压	30	V
VDD	VDD 端最大电压	5.5	V
V _{MAX}	EN、COMP、FB、TOFF 和 CS 脚的电压	-0.3~VDD+0.3	V
P _{ESOP8}	ESOP8 封装最大功耗	1.5	W
T_{A}	工作温度范围	-40~85	°C
$T_{ m STG}$	存储温度范围	-55~150	°C
T_{SD}	焊接温度范围(时间小于30秒)	240	°C
V _{ESD}	静电耐压值(人体模型)	2000	V

注1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

内部电路方框图




电特性(除非特别说明, V_{DD}=4.2V, T_A=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位		
电源电压								
VDD 电压范围	V_{DD}		2.6		5.5	V		
欠压保护电压	V _{DD_UVLO}	V _{DD} 上升		2.6		V		
欠压保护迟滞	VDD_HYS			0.4		V		
电源电流	电源电流							
工作电流	I_{OP}	F _{OP} =200KHz		1.3		mA		
待机输入电流	I_{INQ}	无负载, EN 为低电平		200		uA		
输入峰值电流采样								
过流保护阈值	V _{CS_TH}		240	250	260	mV		
输出电流采样	输出电流采样							
FB 脚电压	V_{FB}		240	250	260	mV		
关断时间						•		
最小关断时间	T_{RC_MIN}	RC 脚无外接电容		620		ns		
DIM 使能端输入						•		
DIM 端输入高电平			0.4*V _{DD}			V		
DIM 端输入低电平					0.8	V		
内置 MOS 管	内置 MOS 管							
MOS 管耐压	VDS		30			V		
MOS 管导通内阻	RDSON	VGS=4.5V		70		mΩ		
过温保护								
过温调节	OTP_TH			135		°C		

典型特性曲线

应用指南

概述

OC3002 是一款内置 30V功率NMOS升压型大功率LED恒流驱动IC,采用固定关断时间的峰值电流模式控制方式。

芯片内部由误差放大器、PWM比较器、电感峰值电流限流、固定关断时间控制电路、PWM 逻辑、功率管驱动、基准等电路单元组成。

芯片通过FB管脚来采样LED输出电流。系统处于稳态时FB管脚电压VFB恒定在约250mV。 当VFB电压低于250mV时,误差放大器的输出电压即COMP管脚电压升高,从而使得在功率管导通期间电感的峰值电流增大,因此增大了输入功率,VFB电压将会升高。反之,当VFB电压高过250mV时,误差放大器的输出电压会逐渐降低,从而使得在功率管导通期间电感的峰值电流减小,因此减小了输入功率,VFB电压随之降低。

芯片通过CS管脚采样电感电流,实现峰值电流控制。此外,CS脚还用来限制最大输入电流,实现过流保护功能。

系统关断时间可通过连接到RC管脚的电容CRC来设置。通过设定关断时间,可设置系统的工作频率。

COMP管脚是误差放大器的输出端,需在COMP脚外接电阻、电容来实现频率补偿。

OC3002 内部集成了VDD稳压管,以及软启动和过温保护电路。

LED 电流设置

LED输出电流由连接到FB管脚的反馈电阻R_{FB}设定:

$$I_{LED} = \frac{0.25}{R_{FB}}$$

TOFF设置

关断时间可由连接到RC引脚端的电容CRC 设定:

$$T_{RC} = 0.51*150K\Omega*(C_{RC}+7.3pF)+T_D$$

其中T_D=61ns。

如果不外接 C_{RC} ,OC3002 内部将关断时间设定为 620ns。对于大多数应用,建议 C_{RC} 电容取值为 22~33pF或更大。

系统工作频率 Fs

系统工作频率Fs由下式确定:

$$F_{S} = \frac{V_{IN}}{V_{OUT} * T_{OFF}}$$

其中V_{IN}、V_{OUT}分别是系统输入和输出电压。

电感取值

流过电感的纹波电流大小与电感取值有关。工作于连续模式时,电感纹波电流由下式确定:

$$\Delta I_L = \frac{V_{OUT} - V_{IN}}{I_L} * T_{OFF}$$

增大电感值纹波电流会减小,反之增大。

连续模式下电感的峰值电流由下式确定:

$$I_{pk} = \frac{V_o * I_{LED}}{V_{IN} * \eta} + \frac{1}{2} \Delta I_L$$

电感电流工作在连续模式与非连续模式的临界值由下式确定:

$$Lcri = \frac{V_{IN} * (V_{OUT} - V_{IN}) * T_{OFF}}{2V_{OUT} * I_{LED}}$$

电感数值大于Lcri则系统工作在连续模式,电感数值小于Lcri则系统工作在非连续模式。

在电感选择时,应保证流过电感的峰值电流不引起电感的磁饱和。通常要求电感的饱和电流大于电感峰值电流的 1.5 倍以上。同时应选择低 ESR 的功率电感,在大电流条件下电感自身的 ESR 会显著影响系统的转换效率。

Rcs设置

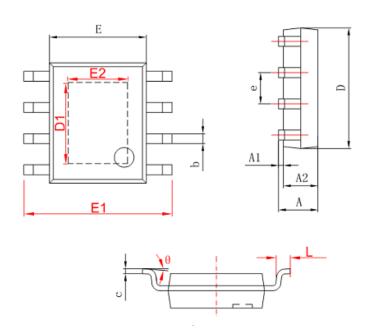
需合理设置Rcs电阻阻值,以防止在正常负载下因为输入限流而限制输出功率。

$$R_{CS} \leq \frac{0.2}{\frac{V_{OUT} * I_{LED}}{\eta * V_{IN}} + \frac{V_{OUT} - V_{IN}}{2L} * T_{OFF}}$$

其中η表示转换效率,典型地可取 90%。应在最低输入电压下计算得到 R_{CS} 值。 系统的最大峰值电流 I_{PK} 由电阻 R_{CS} 限定:

$$I_{PK} \le \frac{0.25}{R_{CS}}$$

过温保护


当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过 135 度以上时,过温调节开始起作用:随温度升高输入峰值电流逐渐减小,从而限制输入功率,增强系统可靠性。

封装信息

ESOP8 封装参数

SOP-8/PP

⇔ ₩	Dimensions In Millimeters		Dimensions In Inches		
字符	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0.069	
A1	0. 050	0. 150	0.004	0. 010	
A2	1. 350	1. 550	0.053	0. 061	
b	0. 330	0. 510	0.013	0. 020	
С	0. 170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
D1	3. 202	3. 402	0.126	0. 134	
E	3. 800	4. 000	0.150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0.091	0.099	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0.016	0. 050	
θ	0°	8°	0°	8°	